jueves, 14 de marzo de 2013

4TO SEMESTRE 1ER PARCIAL

PLASMAS

Los plasmas son gases calientes e ionizados. Los plasmas se forman bajo condiciones de extremadamente alta energía, tan alta, en realidad, que las moléculas se separan violentamente y sólo existen átomos sueltos. Más sorprendente aún, los plasmas tienen tanta energía que los electrones exteriores son violentamente separados de los átomos individuales, formando así un gas de iones altamente cargados y energéticos. Debido a que los átomos en los plasma existen como iones cargados, los plasmas se comportan de manera diferente que los gases y forman el cuarto estado de la materia. Los plasmas pueden ser percibidos simplemente al mirar para arriba; las condiciones de alta energía que existen en las estrellas, tales como el sol, empujan a los átomos individuales al estado de plasma.
Como hemos visto, el aumento de energía lleva a mayor movimiento molecular. A la inversa, la energía que disminuye lleva a menor movimiento molecular. Como resultado, una predicción de la Teoría Kinética Molecular es que si se disminuye la energía (medida como temperatura) de una sustancia, llegaremos a un punto en que todo el movimiento molecular se detiene. La temperatura en la cual el movimiento molecular se detiene se llama cero absoluto y se calcula que es de -273.15 grados Celsius. Aunque los científicos han enfríado sustancias hasta llegar cerca del cero absoluto, nunca han podido llegar a esta temperatura. La dificultad en observar una sustancia a una temperatura de cero absoluto es que para poder “ver” la sustancia se necesita luz y la luz transfiere energía a la sustancia, lo cual eleva la temperatura. A pesar de estos desafíos, los científicos han observado, recientemente, un quinto estado de la materia que sólo existe a temperaturas muy cercanas al cero absoluto.
Los Condensados Bose-Einstein representan un quinto estado de la materia visto por primera vez en 1955. El estado lleva el nombre de Satyendra Nath Bose y Albert Einstein, quien predijo su existencia hacia 1920. Los condensados B-E son superfluídos gaseosos enfríados a temperaturas muy cercanas al cero absoluto. En este extraño estado, todos los átomos de los condensados alcanzan el mismo estado mecánico-quantum y pueden fluir sin tener ninguna fricción entre sí. Aún más extraño es que los condensados B-E pueden “atrapar” luz, para después soltarla cuando el estado se rompe.
También han sido descritos o vistos varios otros estados de la materia menos comunes. Algunos de estos estados incluyen cristales líquidos, condensados fermiónicos, superfluídos, supersólidos y el correctamente denominado "extraña materia". Para leer más sobre estas fases, visite la página Phase (Fase) de la Wikipedia, cuyo enlace se encuentra en la sección Para Seguir Explorando.
Transiciones de Fase

La transformación de un estado de la materia a otro se denomina transición de fase. Las transiciones de fase más comunes tienen hasta nombre. Por ejemplo, los términos derretir y congelar describen transiciones de fase entre un estado sólido y líquido y los términos evaporación y condensación describen transiciones entre el estado líquido y gaseoso. Las transiciones de fase ocurren en momentos muy precisos, cuando la energía (medida en temperatura) de una sustancia de un estado, excede la energía permitida en ese estado. Por ejemplo, el agua líquida puede existir a diferentes niveles de temperatura. El agua fría para beber puede estar alrededor de 4ºC. El agua caliente para la ducha tiene más energía y, por lo tanto, puede estar alrededor de 40ºC. Sin embargo, a 100ºC en condiciones normales, el agua empezará una transición de fase y pasará a un estado gaseoso. Por consiguiente, no importa cuán alta es la llama de la cocina, el agua hirviendo en una cacerola se mantendrá a 100ºC hasta que toda el agua haya experimentado la transición al estado gaseoso. El exceso de energía introducido por la alta llama acelerará la transición de líquido al gas; pero no cambiará la temperatura. La curva de calor siguiente ilustra los cambios correspondientes en energía (mostrada en calorías) y la temperatura del agua, a medida que experimenta la transición de fase del estado líquido al estado gaseoso.

Como puede verse en el gráfico superior, el movimiento de izquierda a derecha muestra que la temperatura del agua líquida aumenta a medida que se introduce la energía (calor). A 100ºC el agua empieza a experimentar una transición de fase y la temperatura se mantiene constante, aún cuando se añade energía (la parte plana del gráfico). La energía que se introduce durante este periodo es la responsable de la separación de la fuerzasintermoleculares para que las moléculas de agua individuales puedan “escapar” hacia el estado gaseoso. Finalmente, una vez que la transición ha terminado, si se añade más energía al sistema, aumentará el calor del agua gaseosa o vapor.
Este mismo proceso puede ser visto inversamente, si simplemente miramos al gráfico superior yendo de la derecha hacia la izquierda. A medida que el vapor se enfría, el movimiento de las moléculas del agua gaseosa y, por consiguiente, de la temperatura, disminuirá. Cuando el gas alcanza 100ºC se perderá más energía del sistema a medida que las fuerzas de atracción entre las moléculas se reformen. Sin embargo, la temperatura se mantiene constante durante la transición (la parte plana del gráfico). Finalmente, cuando la condensación se acaba, la temperatura del líquido empezará a disminuir a medida que la energía se retira.
Las transiciones de fase son una parte importante del mundo que nos rodea. Por ejemplo, la energía que se pierde cuando la perspiración se evapora de la superficie de nuestra piel, le permite a nuestro cuerpo regular correctamente su temperatura durante los día cálidos. Las transiciones de fase tienen un importante rol en la geología, influenciando la formaciónmineral y, posiblemente, hasta los terremotos. Y quién puede ignorar la transición de fase que ocurre a aproximadamente -3ºC, cuando la crema, tal vez con algunas fresas o pedazos de chocolate, empieza a formar un sólido helado.

Como puede verse en el gráfico superior, el movimiento de izquierda a derecha muestra que la temperatura del agua líquida aumenta a medida que se introduce la energía (calor). A 100ºC el agua empieza a experimentar una transición de fase y la temperatura se mantiene constante, aún cuando se añade energía (la parte plana del gráfico). La energía que se introduce durante este periodo es la responsable de la separación de la fuerzasintermoleculares para que las moléculas de agua individuales puedan “escapar” hacia el estado gaseoso. Finalmente, una vez que la transición ha terminado, si se añade más energía al sistema, aumentará el calor del agua gaseosa o vapor.
Este mismo proceso puede ser visto inversamente, si simplemente miramos al gráfico superior yendo de la derecha hacia la izquierda. A medida que el vapor se enfría, el movimiento de las moléculas del agua gaseosa y, por consiguiente, de la temperatura, disminuirá. Cuando el gas alcanza 100ºC se perderá más energía del sistema a medida que las fuerzas de atracción entre las moléculas se reformen. Sin embargo, la temperatura se mantiene constante durante la transición (la parte plana del gráfico). Finalmente, cuando la condensación se acaba, la temperatura del líquido empezará a disminuir a medida que la energía se retira.
Las transiciones de fase son una parte importante del mundo que nos rodea. Por ejemplo, la energía que se pierde cuando la perspiración se evapora de la superficie de nuestra piel, le permite a nuestro cuerpo regular correctamente su temperatura durante los día cálidos. Las transiciones de fase tienen un importante rol en la geología, influenciando la formaciónmineral y, posiblemente, hasta los terremotos. Y quién puede ignorar la transición de fase que ocurre a aproximadamente -3ºC, cuando la crema, tal vez con algunas fresas o pedazos de chocolate, empieza a formar un sólido helado.

Video:

http://www.youtube.com/watch?v=DMBfebQI3Us&feature=player_embedded

No hay comentarios:

Publicar un comentario